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Abstraet--A simplified investigation into the properties of polymers near surfaces in a flow field is pr(~ 
sented. A kinetic theo O" for a two-bead harmonic dumbbell model is derived, centering primarily on the effect 
of anisotropic hydrodynamics due to the presence of a wall. A comparison of the anisotropic and isotropic 
cases is made, and it is found that the difference manifest in the polymer concentration is only substantial at 
relatively high strain rates, or within a few molecular diameters of the wall for realistic values of molecular 
parameters. 

INTRODUCTION 

The study of polymer dynamics at interfaces has 
become more important recently[l,2] due to the 
many application possibilities, such as the understan- 
ding of oil recovery enhancement with polymer injec- 
ted into porous rock, coating films, adhesion, and 
lubrication. A related system is the study of blood cell 
behavior in small capillaries to predict biomedical- 
related phenomenal3], and, clearly, gel permeation 
cl~romatography must also be a benefit of any investi- 
gation related to polymers at interfaces[4]. 

Our purpose in this paper is to present some of our 
findings involving polymer solutions with anisotropic 
hydrodynamic effects due to the presertce of a wall. 
Polymer systems modeled by an n bead-spring chain 
surrounded by a Newtonian fluid[5,6] are expected to 
represent the characteristics of polymeric solutions 
fairly well. However, such a model is rather intractable 
to solve exactly even for simple syste~ls, and even 
then a system involving anisotropic diffusion is cer- 
tainly not simple. A simplification often made in the 
past is to consider only one "unit cell" of the n-bead 
chain, that is, the dumbbell model(two beads con- 
nected with one spring). II is hoped that by ignoring 
the cumbersome bookkeeping involved i:l considering 
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the n-bead chain, and still retaining the elementary 
physics of the model, we will come up with an in- 
tuitive(possibly qualitative) solution. What we have 
given up is molecular weight dependence and most 
probably some detailed structural information. What 
we have gained is the ability to construct a description 
of the system which is virtually impossible to develop 
on a more detailed level. 

Once the decision has been made to consider only 
the two-bead model, a spring potential must be chosen 
to characterize the interaction between the beads. 
Most often the Hookean potential is chosen, which is 
the most studied due to the simplicity in its mathema- 
tical structure. Other potentials have been also stu- 
died, primarily ones that limit the maximum length of 
extension, such as the FENE (Finitely Extendable Non- 
linear Elastic) potential{7] or the Fraenkel model[8]. 
Normally, hydrodynamic interactions between the 
beads are ignored and only the Stokes forces are con- 
sidered. These hydrodynamic interactions should be 
included to describe the dynamics of the system; how- 
ever, their inclusion causes the problem to become 
complicated. A formal but virtually rigorous theory for 
the system involving flow with hydrodynamic: interac- 
tion is given in Jhon et ah[9]. In our analysis, we will 
consider the hydrodynamic effects of bead-wall inter- 
actions but not bead-bead interactions. 

The flow regime most studied in the dumbbell sys- 
tem is homogeneous flow, a flow which has the most 
linear gradients in velocity and can be represented by 
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the truncated Taylor series: v = vo + K.r*, where v is 
the fluid velocity and r is the coordinate. Flows involv- 
ing higher-order terms in the series have been partial- 
ly studied, particularly with regard to polymer migra- 
tion[6,10]. Potential flow is also a favorite of in- 
vestigators, because the flow enters the problem as an 
extra applied potential and can be handled rather easi- 
ly. 

The equilibrium results for n-bead chains are relati- 
vely easy to find without imposed flow, and n~uch has 
been studied on this subject in the past[l 1-14]. 
Howew~r, only limited studies of wall effects on poly- 
mers in the presence of a flow field have been perfor- 
med[15-17]. In this paper, we wish to point out the 
salient effects of this case by using a simple polymer 
model and a simple flow field. In order to keep our 
results clear, we will not consider hydrodynamic in- 
teractions between the beads, only interactions involv- 
ing the beads and the wall. It is further assumed that 
dumbbells do not interact with one another hydro- 
dynamically; that is, the combined effect of a dumb- 
bell solution is the sum of the effects of the individual 
dumbbells. Our defense for these simplifications is not 
that they are unimportant--they are important, but we 
must decline to be concerned with these so that the ef- 
fects strictly related to anisotropic diffusion can be 
isolated. 

If one looks at the diffusion of a sphere near a wall, 
the mobility of the sphere drops off uniformly to zero 
as the distance from the wall decreases to zero; this is 
due to lhe hydrodynamic interaction between the sp- 
here and the wall through the fluid. Although others 
have considered wall-related polymer phenomenal1, 
18, 19], we have succeeded in inserting the wall-de- 
pendent diffusion coefficient into the harmonic dumb- 
bell mc<lel. Clearly, the imperatives of thermodyna- 
mics will leave the equilibrium polymer conformation 
unchanged with the addition of anisotropic diffusion. 
Consequently, the steady-state effect of a spatially 
changing diffusion coefficient must be investigated in 
conjunction with a competing phenomenon, such as a 
velocity gradient in the surrounding fluid. Therefore, 
the effect at steady state of adding anisotropic diffusion 
to the polymer model, which is purely a dynamic pro- 
cess, can only be investigated in the presence of 
another dynamic process. 

Taking all the above into account, we want to solve 
the problem of the stagnation flow[20] of a dumbbell 
solution onto a single fixed wall. Although this model 

* In general, the flow field can be expressed as 

v=vo+r 'Vvo+ �89  V V  vo+ . . . .  For the homogeneous 
flow, the higher order gradients vanish, and v-=vo+K-r, 
where K = (VVo) + . 

j /  

Velocit Field 

z = 0 plane 
Fig. I. This  r e p r e s e n t s  the  s t r e a m l i n e s  of  f l ow  n e a r  

the  wal l (z=O).  The  f l o w  d i r e c t i o n  a l o n g  the  

s t r e a m l i n e s  is d e t e r m i n e d  by the  s ign  of  z. 

is admittedly simple, it facilitates the necessarily com- 
plicated calculations. We must also use a simple flow 
field for the same reason. The flow field we have selec- 
ted is an irrotational pure extensional flow, pictured in 
Figure 1. To use a f~ow that has a nonzero rotational 
component would force us to recast the problem into 
one that rotates with the local fluid elements, compli- 
cating the problem immensely. The new work presen- 
ted here deals with the effects of anisotropic diffusion 
and the flow field. As mentioned before, if there were 
no flow field, the equilibrium conformation would be 
unaffected by anisotropic diffusion, so we are looking 
for the interaction of two dynamic phenomena, the 
flow field and anisotropic diffusion. Again, we will, un- 
fortunately, have to use an approximation for the 
spatial dependence of the diffusion coefficent, as given 
by Cox and Brenner[21]. 

What we hope to accomplish by these approxima- 
tions is an understanding of the important effects of 
anisotropic diffusion in pores, not an exact calculation 
of any particular case{though we do this as an illustra- 
tion for potential flow}. It will become evident during 
the following developments that anisotropic diffusion 
cannot be ignored in all dynamic pore-- related systems, 
and, using extensiona[ flow, we will compare results 
with and without anisotropic diffusion. After we have 
specified the internal part of the diffusion equation 
precisely, we will obtain an equation relating the local 
concentration of molecules by averaging over the in- 
ternal coordinate. This will give us the observable con- 
centration dependence as a function of the distance 
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from the wall, and will be compared to the case with 
isotropic(Stokes-Einstein) diffusion. 

DEVELOPMENT 

We will begin by seeking a solution to the diffusion 
equation for the two-bead(dumbbell) model, for the 
case of isotropic diffusion in the presence of a wall. For 
this, we will seek an approximation that will allow us 
to determine the effect of anisotropic diffusion on the 
model. In each case, though, we will impose a homo- 
geneous extensional-potential flow generated by 

xz + yz = constant, (1) 

which is schematically represented in Figure 1. Note 
that this velocity description allows for slip at the wall, 
as do all potential flows. Our purpose in this paper, 
however, is not to present the most physically detailed 
account of a wall; rather, we wish to point out the 
coupling of diffusion and the flow field in the most ma- 
thematically unencumbered way possible. The intro- 
duction of vorticity to the velocity field complicates the 
situation tremendously, even for problems not invol- 
ving a wall. Thus, we shall settle for a little less phy- 
sical realism in our flow field in order to obtain an in- 
tuitive sense of the role anisotropic diffusion will play 
involving polymers near interfaces. 
I. The  Probabi l i ty  Dens i ty  with Isotropie  Diffu- 
s ion  

With isotropic diffusion, the equation for the bead 
veloc.ity is(neglecting acceleration)f5]: 

kT Olnlr 1 0r  ( i=1,2) ,  (2) 
L=v( r~ )  ~" Or, ~" Dr, 

where r,  is the position vector of i th bead and v (r,) is 
the velocity of the surrounding fluid evaluated at r,  as 
if the bead was not there. ~ is the probabilily function, 
kT/~" is the part of the diffusion coefficient([= 6~rr~a; 
"a" is radius of bead) and ,/,~ is the part of the potential 
explained below, v(r,) is given by: 

I ' 1 v(r,)  = K  �9 r,; K =  (Vv)+= - ~ - E  0 0 

1 

0 + ~ , 

(3) 
and the wall was chosen to be the plane at z = 0. Here, 

is known as the elongational rate, and can be posi- 
tive or negative depending upon the flow direction, as 
shown in Figure 1. Written in this way, the velocity' 
can be expressed in terms of a potential: 

v(r , )  = - ~ - ~ 7  ~ , ,  ; ,~.,, = ~ - ~ : ,  tx~ +y~  --2z~ t, 

(4) 

to which the rest of the potential(q~r) can be added. The 
potential #,. can further be split up into the connector 
potential(,pc) and a potential due to the wall located at 
z = 0 ( ~ ) :  

r  = r w+r !51 

where 

r  z~Z~>a<a ( i = l ,  2 ) ; 4 , c = ~ H ( r , - r , ) ' .  (61 

Here, "a" is the radius of a bead and H is the Hookes 
law constant. So the equation for the velocity beco- 
mes: 

b, kT Oln~' 1 0 r  (7) 
~" Or, ~ Or," 

Here, # r  is total potential and 

The continuity equatibn of the probability function[5] 
is: 

at  , : ,  f f ~ - -  ( i ,  1r (9) 

We shall start by finding the steady-state solution to 
the diffusion equation. Trivially, we can find the result 
for alF/Ot = 0 by setting/.1 = ['2 = 0_, which gives 

r  (10) lib = C  exp (.- ~-~-), 

where C is a constant. Clearly this is not the solution 
we want, because i'c is the center of mass velocity; i'c= 
(i'1 + i'2)/2 = 0; rather, this solution can only be regar- 
ded as the homogeneous solution of eq.(7). We need to 
attach an additional constraint to this solution, which 
is 

�9 v(r,)  +v(r2)  
r c =  - K -  rc =Vc. ill) 

2 

The general solution can be considered to be of the 
form, 

= f  (rh r2) ~',~ (rh r~), (12) 

where f(rl, r2) is the contribution due to the nonhomo- 
geneous condition imposed by eq. (11), or written as 

i 'c= kT Dlnf 1 D~,(rc) vc (13) 

where 

++_+ , r (rc) = (Xc +yc  - 2z~). 
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Then f is easily solved for: 

2 
f oc exp ~ kT  r  .... (r<)~. (151 

Therefore, the solution now becomes, 

1 2 , r 1 6 2  r 16, 

which can be written in center of mass [r~ :- (r~ + re}:' 
2] and relative or internal coordinates(R = r:,-rl) ex- 
plicitly: 

U 2 2 2 

-2Z~)]} 0 ( z ~ - a ) 0 ( ( 2 z ~ - a ) - [ Z [ ) .  (17) 

where 0 represents the Heaviside step fm~ction and 
~t h = ~,'/4H is a characteristic time constant for the Ho- 
okean dumbbells. This solution satisfies eq.(9) exactty 
for the case D1F/Dt=0, where D/Dt stands for the 
material time derivative. This solution assumes that 
the rnolecule sees no change in its surroundings with 
respect to time. This is not quite true, because z, is a 
function of time, and, therefore, so is the molecule's 
distance from the wall. However, near tl~e wall the 
velocity z~ declines uniformly to zero, and far away 
from the wall the molecule will adopt its usual Gaus- 
sian shape, unaffected by the wall. So it can be expec- 
ted, at least for small values of e in eq.(3), that the drift 
of the molecule towards the wall can be neglected and 
the solution for Dtg/Dt = 0 will closely represent the. 
true solution. 

It remains, then, to define the constant C given in 
eq. (17) by observing that 

j �9 I . , , :~.d~R=C.,  (18) 

where C~ is the bulk concentration. The resulting fun- 
ction for the total probability density then becomes: 

2 u k T  .... (1 k k a e  )I1 - 2X,,e I ' '2 (l'.~l 

H : 'X' exp/-,.}~-.~t', + Y ' §  (X'4 Y ' - 2 Z b ' I }  

0 ( z , - a / 0 ( 2  ( z , - a ) -  IZl). 

It may seen) rather mathematically melodramatic to go 
to such pains to get such a simple solution for isotropic 
diffusion, but the concepts used in the foregoing dev(y 
Iopment involving anisotropic diffusion will rely hea- 
vily on the method presented above. In particular, we 
will find it necessary to approximate the equation for 
the nonhomogenous part [eqS. (13) and (14)] in order 
to obtain an explicit relation for ~. 
2 .  T h e  P r o b a b i l i t y  D e n s i t y  w i t h  A n i s o t r o p i c  

D i f f u s i o n  
When a sphere is in the proximity of a wall, diffu- 

sion is inhibited both parallel and perpendicular to the 
wall. The perpendicular component, however, drops 
off nmch faster than. the parallel one. We will assume, 
therefore, that the parallel component remains un- 
changed from free, diffusion. The perpendicular part of 
the mobility was calculated by Cox and Brenner(22]; 
[ ~ ~-1 (h)]== 1/g f,(h),where h = (zi- a)/a,(z,-a) is the dis- 
tance of ith sphere to the wall. The term f,(h) has the 
asymptotic form 

f~(hl ~ I ~  " / 8 [ n - t  as h ~ 0 

" h+-I  as h --- oo. (20) 

We will adopt for the ensuing development the com- 
bined asymptotic form, stated for simplicity as 

1 h 
' = (21) ( [ ,  ',~zz ~" h + l  

Now the diffusion coefficient becomes a tensor: 

~, ' - -  0 1 0 1 
m 

0 0 

0 

h 0 0 z S a -  1 . 
z i / a  

,:,)9) 

The equation of motion for the individual beads then 
becomes, 

a l n g  a,/,,- , 
i., = v ( r , ' , -  ~ d l (r i) .  ( k T - ~ F + ~ T : .  123) 

Similarly, as in the isotropic case, 

,.. _ Olnl/r c3 ( 
i'i = - :~'z ' (r~, �9 ,, kT --3c3r~ a r ,  r ,-+ ,;b ~.~ ) ]. 124) 

where we define the potential for the flow part of the 
anisotropic case (r as follows: 

&/,), 
[~ i r , )  �9 v ( r ~ ) ,  (25) 

Dr, 

and from eqs. (4), (22), and (25) 

- ( x i + y ~ - 2 z ~ l  
I 

- e  g / l  (z,aq a ' l n { z , / a -  11). 126) 

Note that for the a----,0 limit, eq. (26) reduces to eq.(4) 
as expected. Therefore, we can obtain the homoge- 
nous solution (/h = i'2 = 0); 

g , , = C  e x p [ - ~ ( ~ , - + r  :,]. !27) 

Again, the equation that relates the nonhomogenous 
solution giving i," = v~ is 

S e p t e m b e r ,  1 9 8 8  
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kT 81n f kT Oln f 
' �9 ~" - '  �9 , c728) v , . =  - t ~ - ~ "  a r ,  2 : a R  

where ~ , - ' = ( ~ ' , - ' + g : ~  ' ) /2  and 
= 

= = 

This is, of course, a more difficult equation to solve 
than the one obtained with isotropic hydrodynamics. 
However, if we require that tt~is equation be solved ex- 
actly only at R = 0, then the problem reverts to the 
simpler form obtained for the isotropic case 

3in f 2 aCj,.c (r,:) (29) 
ar,  kT 8r,. 

with 

r  (r,.,) -7-(x~.q-y~',-9 ' 

(z~a +af ln  "z , / a -  I ! ) .  <~( 

Then, similar to eq.(17) for the isotropic case, f= C exp 
[(2/kT) #,,{~ (rr Again, the general solution using the 
a)proximate g'h can be found: 

1 
g" = fg',, = exp ~ -  ~ - ( r  ~+4, / ;  - 2,;t,,.'~ I/.  13l) 

This approximation basically relies on the fact that 
R = 0, a dumbbell, must behave as an equivalent 
sphere. As in the isotropic case, this result can be writ- 
ten explicity in center of mass and internal odor- 
dinates, and using the boundary condition that C=C 
when Zc-,. Go : 

~ = C~ (2--Hn-~) ~ "~ (i + A h ~ ( 1 - 2 A ~ e )  '/2 

exp{-2~[(14-A~ ) X ~ ~y~) 

Z Ca%/k7" 
4- ( 1 - 2 ) , , , e ) Z ' ] }  [ 1 -  { ~  2] 

>' tz~:- a) 

8 (z~, - a) 8 [2 (z~:-a) - I Z l ] .  i321 

3. Computation of Moments 
In this section, we will calculate the first few mo- 

ments of ~. Here, the n th moments  can be defined as 

[9] 

<RR---RR> =- fd~RRR-- -RRr  (R, r,:). (33) 

The zero th moment  evaluated at r~ = r[C(r, t)] gives 
the concentration profile of the polymer molecules; 

that is 

C(r) -= <l)-fd'Rr (R, r~.)l ,, ~ r -  (34) 

For the isotropic ~r [cf. eq.(19)], the resulting concen- 
tration profile is simply given as 

C ( z ) / C ~ - e r f  [V~2 ,u ..... (1-2.a.h~) ! z / a -  1)1. (35) 

Here,/* = Ha:e/kT and err is the error function. 
For the anisotropic lY[cf, eq.(32)], the result is 

somewhat more complicated: 

C (z)/C,~ - A B  (a, 1/2),F,  [1/2; ,~ + 1/2; ,8 (z! }. @6) 

where B represents the Beta function and ~F t repre- 
sents the degenerate hypergeometric function; 

,F, (a: 7; x',, - 

___ 1 ( l - t )  ~'-~* ' f f ' - ' e xp ( x t ) d l :  @7) 
B ( , .  7 - a  ' ' 

and A, , and t9 are defined as 

A - 2  (2n) L..-,p ,.~2 (1 - 2X ,,,c ) '"~ (z la - 1). 

a - l + 4 ( ) , ~  )/~, 

fl (z~)= - 2 p  [ 1 - 2 ( h h e  )} ( z / a -  1) 2 . (,38) 

We have calculated the concentrations for both of the 
above cases with the aid of a computer, and the results 
are presented in the next section. 

In addition, moments  for the isotropic and aniso- 
tropic cases can be calculated. We wil l  give the results 
for the second-order moments. The second moments 
can be written in tensorial form, and 

[, 'X ~ , 0 0 , / 

(RR) = 0 (Y~) 0 

0 0 <Z = ). (39) 

When the dumbbel l  locates far away from the walt 
zc--- oo, it becomes 

<X'},, = ( Y b ~  ~ a '  (,u [ l + a  ~e ]) - ' .  ,.'40) 

and 

<Z 'L  = a  ~ (~ [ ] -  23 ~E ~) % q'4D 

The reader can easily see that '..,Xa)I:X2}== 1, and 
. :y2). l<y>:,  = 1. However, (Z2) , / (  Z2}~ # 1. The zz- 
component of second moment tensor for the isotropic 
tensor becomes 

/ 2' / 2\  I , ' 2 ~  ,,Z ) / \ Z  .,.~ - 2 n  q3/2, 2~ ( 1 -  2Xp,~ )1 

( z J a  - 1) = (42) 

Here, 7{a, x) is the incomplete Gamma function. The 
zz-component of the second moment tensor for the 
anisotropic case is: 

<Z'}/<Z'} ~-= 4~ ( 1 -  2), ~ ) [  ( z c / a ) -  l] = 

A B ( a ,  3 /2 ) ,F ,  [3/2; 3 / 2 + a  ; ,8(z,.) ]. 

(43) 

CONCLUSION 

Although the flow regime used (extensional-homo- 
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1.4 

1.2 

01,  20 
4 Xh~/~ 06 

Z 

Fig. 2. This  is a t h r e e - d i m e n s i o n a l  r e p r e s e n t a t i o n  of 
the  equat ion  of the  concentra t ion  for the iso.  
tropic  case .  The wal l  is  at z = 0 and  Ha2 /kT = 
0.5.  

geneous) is hypothetical, it serves well to poin, out the 
important factors introduced by the anisotropic hydro- 
dynamics induced by the presence of a wall. The re- 
sults of this analysis should give investigator.,; a good 
feel for the contribution of anisotropic hydrodynamics 
to polymers in pores and confined geometries. 

The plots given in Figures 2 and 3 are a comparison 
of the anisotropic and isotropic equations derived in 
the previous section.The plot involving-4kh~/~ should 
be interpreted as a flow field similar to Figure 1, except 
when the direction of flow along the streamlines is re- 
versed. In addition to what was discussed in the intro- 
duction, it becomes necessary to say a few words about 
the stability of the molecule in the flow field. Not all 
values of e are possible for a harmonic dumbbell, be- 
cause at a certain critical E the dumbbell beads will fly 
apart indefinitely even in an isotropic medium (~ = 1/ 
2 '~.h for ~ positive and ~ : -1/)~h for e negative]. A com- 
monly used repair of this defect is a FENE potential, or 
some other potential that allows only finite extension 
of the :spring. A discussion on the relative merits of 
these potentials is a paper in itself, and we refer those 
interested to Bird et al.[5]. For this paper, we will deal 
with a harmonic dumbbell, and the reader would do 
well to keep in mind that there is some upper bound 
that e cannot cross. 

As we discussed in the introduction, the ,effects of 
anisotropic diffusion only manifest when coupled with 
a flow field. Figure 4 shows clearly that as the flow 
strength c decreases, the difference between the aniso- 
tropic concentration and isotropic concentration vani- 
shes. Indeed, it appears that a fairly large e is needed, 
one close to the critical e, to effect a substantial dif- 

1.2 

1.0 

0.8 
r)  
0 0.6 

0.4 

0.2 

0.o 

-04 
10 0.0 

4 lh<u 0.6 3.0 20 
4.0 Z 

Fig. 3. This  is  a t h r e e - d i m e n s i o n a l  r e p r e s e n t a t i o n  of 

the  equat ion  of the  concentra t ion  wi th  an~so- 
tropic  h y d r o d y n a m i c  in teract ions  due  to the 
p r e s e n c e  of the wal l ,  aga in  Ha2/kT = 0.5. 

ference of-20 or 30 percent. Also, we predict for posi- 
tive values of ~ that the anisotropic concentration will 
be below the isotropic value, and that the situation wilt 
reverse itself for negative values of ~. When e is posi- 
tive, the molecule is extending in the z-direction, in 
the direction of the wall, and it seems that the acldi- 
tional interference from anisotropy depresses the con- 
centration in the near-wall region. This point car, be 
easily explained from the following simple argument. 

Let us study the nonhomogenous concentration 
profile in the presence of the small extensional rat(~E). 
The difference between anisotropic and isotropic con- 
centrations is defined as: 

C . . . . .  -C,~o =--AC (zc, ~ ). (44) 

AC iS computed from eqs.(35) and (36) as 

8"  AC(zc, ~ )=~o~ 8c. (AC) l~:o 

= 0 - c A +  0 (~). (45) 

In general, we can show that A is positive. ThereIore, 
from eqs.(44) and (45) 

S e p t e m b e r ,  1988  
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5.0 
C = 90% Contour 

40, 

N 3.0" 

2.0- 

O 

[3 

8 
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= t~. 
�9 = Aniso. 

1.0 ! I 1 I I 
-0.! -0.6 -t).3 0.0 0.3 0.6 0.9 

4 t,, ~,u 

Fig. 4. This  g i v e s  d i s tance  from the  wal l  at which  the  
con cen t ra t ion  is  at  90% of  the  bulk  as  a func- 

tion of the  f low parameter s .  

~_0, Ca,,i.o~_C~.~o; ~. <0 ,  C~ , . . o>Cr  1~6) 

The fact that there is actually a local maximum in 
concentration above the bulk concentration for ~ less 
than zero is more difficult to explain. We suspect that, 
since in this case the molecule is extended in the direc- 
tion parallel to the wall in this case, they are stacking 
up like coins when encountering the resistance due to 
anisotropy. It is not sufficient to claim that this local 
maximum is an artifact of the flow field itself arm not 
due to the polymer nature of the system, because scru- 
tiny of eq.{32) for z = 0, the case where the dumbbell  
be.haves as a single sphere, proves that a solution of 
spheres will have a constant concentratkm right up to 
the wall. It is expected, therefore, that t;ais maximum 
is truly a characteristic of a polymer system near a 

wall. 
Finally, something must be said of the applicability 

of all this to real polymer systems. We have tried to il- 
lustrate as simply as possible the qualitative changes 
that can be expected due to anisotropic hydrodyna- 
mics in polymer systems involving a wall. We have 
considered a vorticity free flow; but, theoretically, vor- 
ticity adds a spin to the "natural" center of mass coor- 
dinate of the molecule, causing the shear field and 
wall potential to oscillate and possibly doing away 
with the steady-state assumption. We expect that this 
change in the "natural" coordinate frame will leave 

the unchanged tendencies due to isotropy, as describ- 
ed in this paper. We have assumed that there is no hy- 
drodynamic interaction between the beads themselves; 
while on an order of magnitude basis this assumption 
is indefensible, we needed this simplification to keep 
the derivation intuitive and simple. We re[egate this 
potential improvement to the future work file. 

We expect that these results will be of interest to re- 
searchers concerned with pore and interfacial pheno- 
mena  involving polymer solutions. At least on a qua- 
litative basis, this analysis should contribute insight in- 
to the role of the anisotropic hydrodynamics. 

N O M E N C L A T U R E  

a 

A 
B 
C 

Canlso 
Clso 
C= 
A C  

D/Dr 

f(rl,r2) 

iF1 
h 

H 
k 
K 
r 

r i  

r c  

R 
t 
T 
V 

Vc 

Vo 

Xt,Yi, Zi 
X,Y,Z 

: Radius of particle 
: Coefficient in eq.(38) 
: Beta function 
: Constant 
: Anisotropic concentration 
: lsotropic concentration 
: Bulk concentration 
: Difference of the concentration 
: Material time derivative 

Function due to nonhomogeneous  condi- 

tion 
Degenerate hypergeometric function 
(zra)/a . Here, (zi-a) is the distance of ith 
bead to the wall 
Spring constant 
Boltzmann's constant 

(~' v D + 
Position vector 
Position vector of ith bead 

Center of mass 
[ntemal configuration coordinate 

: Time 
: Absolute temperature 
: Fluid velocity 
: Fluid velocity at the center 
: Fluid velocity at the origin 
: Cartesian coordinate of ith bead 
: Internal configuration (Cartesian coordina- 

te) 

G r e e k  L e t t e r s  
G' 

~'(<,,x) 

~rt 
~k 

~,c 

Coefficient in eq. (38) 
Coefficient in eq. (38) 
Incomplete Gamma function 
Elongational rate 
Potential due to the flow 
Potential due to the flow of the anisotropic 
case 
Potential due to the flow of the anisotropic 
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~r 
Ah 
/z 

S~ 

~h 

case at the center 
Potential due to the wail 
Connector potential 
Potential (~u + ~c) 
Total potential (~b~/+ 4'.~ + eL) 
Characteristic time constant 
Ha2/kT 
Heaviside step function 
Friction coefficient of i th bead 

1 / 2 i ~ , ' ~ 2 ' i  

Scalar of the friction coefficient 
Probability function 
Probability function of homogeneous sys- 
tem 

Superscript 
+ - Transpose 
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